Lisäsisällöt – Ravinto

Tervetuloa ravinto-kappaleen lisätietosivustolle. Täältä saat kirjan sisältöön liittyen lisätietoja, tuotesuosituksia, välinelinkkejä ja lähdeluettelon. Toimituksen suositukset on merkitty kolmella sydämellä (❤❤❤).

Ruoansulatuselimistön rakenne ja toiminta

Mikrobiomi

Mikrobiomin analysointi

Aivot–suolisto-akseli

Ruoka-aineallergiat ja -yliherkkyydet

Antiravinteet

Probiootit

Prebiootit

Ruuansulatusta tukevat ravintolisät

Ruoan valmistus ja teknologiset apuvälineet

Ruoan ja juoman seuranta -sovellukset

Villiruokien tunnistus -sovellukset

Ravinnon hankkiminen

Viljely

Allergioiden ja yliherkkyyksien mittaaminen

Laboratorio- ja mittauspalvelut

 

Geenitestit

Verkkosivut

Kirjat

Dokumentit

Podcastit

Artikkelit

Videot

Geenitestit (painetusta kirjasta poistettu kappale)

APOE-geenin variantti APOE4

  • Apolipoproteiini E (APOE) on tärkeä rasva-aineen- vaihdunnalle, erityisesti lipoproteiinin ainesosien (mm. LDL) pilkkomiselle.
  • Tyyppi 4 on yhdistetty kohonneisiin kolesteroli- arvoihin, valtimonkovettumatautiin ja Alzheimerin tautiin.(200)
  • Vaikka tyypin 4 omaavilla ihmisillä kognitiiviset toiminnot heikkenevät nopeammin, on heillä varhaisessä iässä parantunut aivotoiminta, erityisesti hippokampuksessa.(201)

PPRG2-geenin variantti Pro12Ala

  • PPRG (Peroxisome Proliferator-activated Receptor Gamma) on tumaproteiini, joka vaikuttaa muun muassa lihavuuteen.
  • Ala-tyyppi on yhdistetty vähentyneeseen riskiin sairastua kakkostyypin diabetekseen.(202)
  • Hiirillä tehdyissä kokeissa huomattiin, että variantin omaavilla paljon rasvaa sisältävä ruokavalio lisäsi ylipainoa nopeammin ja altisti sitä kautta jälleen diabetekselle.(203)

TCF7L2-geenin variantit IVS4G>T ja IVS3C>T

  • TCF7L2 on proteiinien säätelytekijä
  • Mainitut variantit on yhdistetty lisääntyneeseen riskiin sairastua kakkostyypin diabetekseen.(204)

B3AR-geenin variantti Trp64Arg (205) ja B2AR variantti Gln27Glu (206)

  • Beeta-adrenoreseptorit (beta-adrenergic receptors) vaikuttavat keskeisesti energiantuotantoon ja sympaattisen hermoston toimintaan.
  • Mainitut variantit on yhdistetty ylipainoon.

FTO-geenin variantti rs9939609(A)

  • FTO (fat mass and obesity-associated protein) on geeni, jonka tietyt variantit on linkitetty lihavuuteen.
  • A-tyypin omaavilla on merkittävästi lisääntynyt riski ylipainoon ja kakkostyypin diabetekseen.(207)(208)

MCM6-geenin variantti rs4988235

  • Vaikuttaa muun muassa laktaasientsyymin (LCT) tuotantoon.
  • T-tyypin omaavat sietävät yleensä laktoosia.
  • C/T-tyyppi on yhdistetty lihavuuteen.(209)
  • C/C-tyyppi on todennäköisesti laktoosi-intolerantti.(210)

HLA-DQ-geenin variantit HLA-DQ2 ja HLA-DQ8

  • HLA-DQ geenit koodaavat tiettyjä proteiineja osana immuunijärjestelmää.
  • Mainitut variantit on linkitetty vahvasti keliakiaan.(211)

OPRM1-geenin variantti A118G

  • OPRM1-geeni koodaa opioidireseptoreita.
  • G-tyyppi voi merkittävästi lisätä alkoholiriippuvuutta. (212)

PNPLA3-geenin variantti I148M

  • Rasva-aineenvaihduntaan liittyvän PNPLA3-geenin muunnos hidastaa maksassa triglyseridirasvojen hajoamista ja edistää siten maksan rasvoittumista.(213)

CYP1A2-geenin variantti 164A>C

  • Kofeiini, mykotoksiinit ja muun muassa parasetamoli pilkotaan maksassa pääasiassa CYP1A2-entsyymin toimesta.
  • Eri ihmisillä on eroavaisuuksia CYP1A2-entsyymi- järjestelmän toiminnan nopeudessa.
  • C-tyypin omaavilla on hidastunut entsyymitoiminta, minkä johdosta kahvin juonti voi lisätä riskiä sydäninfarktiin(214) tai nostaa verenpainetta.(215)

MTHFR-geenin variantit C677T ja A1298C ja MTRR- geenin variantti A66G

  • MTHFR (metyleenitetrahydrofolaattireduktaasi) on entsyymi, jota tarvitaan muun muassa foolihapon ja joidenkin muiden folaatin muotojen muuntamiseksi solujen käyttämäksi metyylifolaatiksi eli 5-MTHF:ksi. Foolihappo on aine, jota on vitamiinivalmisteissa ja vitaminoiduissa ruoissa.
  • Mainittujen varianttien kantajat eivät pysty muuntamaan foolihappoa tehokkaasti aktiiviseksi folaatiksi. Tämän tuloksena sydän- ja verisuonitautien riski- tekijänä tunnettu korkea homokysteiinitaso nousee erityisesti C677T- ja A66G-varianttien kantajilla.(216)
  • Suositeltavaa on foolihapon vaihtaminen tehokkaampaan metyylifolaattiin.

ANKK1 geenin variantti A1 (Taq1A polymorfismi)(217)

  • ANKK1 (engl. ankyrin repeat and kinase domain containing 1) liittyy oleellisesti dopamiini 2 reseptoriin (DRD2) eli palkitsemiseen ja motivaatioon.
  • Mutaatio geenissä altistaa addiktiiviselle käyttäy- tymiselle (alkoholi, tupakka, sokeri, uhkapelaaminen, opiaatit).(218)
  • A1-alleelia esiintyy erityisesti reilusti ylipainoisilla (BMI > 30) henkilöillä.(219)

ADH1B geenin variantti rs1229984

  • Nopeuttaa alkoholin muuttumista asetaldehydiksi (nopeammin krapula).
  • Variantin omaavilla vähentynyt riski alkoholismiin.(220)

ALDH2 geenin mutaatio isoentsyymi ALDH2-2:ssa

  • ALDH2-2 isoentsyymin aktiivisuus on selvästi alentunut (esiintyy tyypillisesti Pohjois-Aasiassa).
  • Altistaa alkoholin aiheuttamille haittavaikutuksille ja myrkytykselle.(221)

 

Lähteet

  1. Ryynänen, J. (2014). Pleiotropy of vitamin D-mediated gene regulation. Väitöskirja, Itä-Suomen Yliopisto. [luettu: 21.9.2014]
  2. Loftas, T. & al. (1995). Food and Agriculture Organization of the United Nations. Dimensions of need: An atlas of food and agriculture.
  3. Andrade, A. & Greene, G. & Melanson, K. (2008). Eating slowly led to decreases in energy
    intake within meals in healthy women. Journal of American Dietic Association 108 (7): 1186–1191.
  4. King, B. & Townsend-Nicholson, A. (2008). Involvement of P2Y1 and P2Y11 purinoceptors in
    parasympathetic inhibition of colonic smooth muscle. Journal of Pharmacology and Experimental Therapeutics 324 (3): 1055–1063.
  5. Abels, J. et al. (1959). The physiologic mechanism of vitamin B12 absorption. Acta Medica Scandinavica 165: 105–113.
  6. Kassarjian, Z. & Russell, R. (1989). Hypochlorhydria: a factor in nutrition. Annual Reviews Nutrition 9: 271–285. Review.
  7. Lau, Y. & Ahmed, N. (2012). Fracture risk and bone mineral density reduction associated
    with proton pump inhibitors. Pharmacotherapy 32 (1): 67–79.
  8. Tennant, S. et al. (2008). Influence of gastric acid on susceptibility to infection with ingested
    bacterial pathogens. Infection and Immunity 76 (2): 639–645.
  9. Sarzynski, E. & Puttarajappa, C. & Xie, Y. & Grover, M. & Laird-Fick, H. (2011). Association
    between proton pump inhibitor use and anemia: a retrospective cohort study. Digestive
    Diseases and Sciences 56 (8): 2349–2353.
  10. Lam, J. & Schneider, J. & Zhao, W. & Corley, D. (2013). Proton pump inhibitor and histamine 2
    receptor antagonist use and vitamin B12 deficiency. The Journal of The American Medical Association 310 (22): 2435–2342.
  11. Theisen, J. et al. (2000). Suppression of gastric acid secretion in patients with gastroesophageal reflux disease results in gastric bacterial overgrowth and deconjugation of bile acids. Journal of Gastrointestinal Surgery 4 (1): 50–54.
  12. Helander, H. & Fändriks, L. (2014). Surface area of the digestive tract revisited.
    Scandinavian Journal of Gastroenterology 49 (6): 681–689.
  13. Svendsen, A. (2000). Lipase protein engineering. Biochimica et Biophysica Acta 1543 (2): 223–238. Review.
  14. Yao, Z. & Bamji-Mirza, M. (2011). Animal lipid biochemistry. Phospholipases. The ACOS Lipid Library. [luettu: 11.9.2014]
  15. Irving, M. & Catchpole, B. (1992). ABC of colorectal diseases. Anatomy and physiology of
    the colon, rectum, and anus. British Medical Journal 304 (6834): 1106–1108. Review.
  16. Miller, T. & Wolin, M. (1996). Pathways of acetate, propionate, and butyrate formation
    by the human fecal microbial flora. Applied and Environmental Microbiology 62 (5): 1589–1592.
  17. Bollinger, R. et.al. (2007). Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. Journal of Theoretical Biology 249 (4): 826–831. Review.
  18. Im, G. et al. (2011). The appendix may protect against Clostridium difficile recurrence. Clinical Gastroenterology and Hepatology 9 (12): 1072–1077.
  19. Vons, C. et al. (2011). Amoxicillin plus clavulanic acid versus appendicectomy for treatment of acute uncomplicated appendicitis: an open-label, non-inferiority, randomised controlled trial. Lancet 377 (9777): 1573–1579.
  20. Jussila, A. et al. (2013). High and increasing prevalence of inflammatory bowel disease in Finland with a clear North-South difference. Journal of Crohns & Colitis 7 (7): e256–262.
  21. Hou, J. & Abraham, B. & El-Serag, H. (2011). Dietary intake and risk of developing
    inflammatory bowel disease: a systematic review of the literature. The American Journal of
    Gastroenterology 106(4):563-573. Review.
  22. Fasano, A. (2011). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology 42 (1): 71–78.
  23. Olendzki, B. et al. (2014). An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report. Nutrition Journal 16; 13:5.
  24. Drago, S. et al. (2006). Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac
    intestinal mucosa and intestinal cell lines. Scandinavian Journal of Gastroenterology 41 (4): 408–419.
  25. Festen, E. et al. (2011) A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn’s disease and celiac disease. PLoS Genetics 7 (1): e1001283.
  26. Herfarth, H. & Martin, C. & Sandler, R. & Kappelman, M. & Long M. D. (2014). Prevalence of a
    gluten-free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases. Inflammatory Bowel Diseases 20 (7): 1194–1197.
  27. Batterham, R. et al. (2003). Pancreatic polypeptide reduces appetite and food intake in
    humans. The Journal of Clinical Endocrinology and Metabolism 88 (8): 3989–3992.
  28. Kunitz, M. (1939). Formation of trypsin from crystalline trysinogen by means of enterokinase. Journal of General Physiology 22 (4): 429–446.
  29. Hall, J. (2010). Guyton and Hall Textbook of Medical Physiology. U.S.: Saunders.
  30. European Association for the Study of Liver. (2012). EASL clinical practical
    guidelines: management of alcoholic liver disease. Journal of Hepatology 57(2):399–420.
  31. Chida, Y. & Sudo, N. & Kubo, C. (2006). Does stress exacerbate liver diseases? Journal of
    Gastroenterology and Hepatology 21 (1 Pt 2): 202–228. Review.
  32. Milić, S. & Lulić, D. & Štimac, D. (2014). Non-alcoholic fatty liver disease and obesity:
    biochemical, metabolic and clinical presentations. World Journal of Gastroenterology 20 (28): 9330–9337.
  33. Pandit, A. & Sachdeva, T. & Bafna, P. (2012). Drug-Induced Hepatotoxicity: A Review. Journal of Applied Pharmaceutical Science 02 (05): 233–243.
  34. Pak, E. & Esrason, K. & Wu, V. (2004). Hepatotoxicity of herbal remedies: an emerging
    dilemma. Progress in Transplantation 14 (2): 91–96. Review.
  35. Michalopoulos, G. (2007). Liver regeneration. Journal of Cellular Physiology 213 (2): 286–300.
    Review.
  36. Grant, D. (1991). Detoxification pathways in the liver. Journal of Inherited Metabolic Disease
    14 (4): 421–430. Review.
  37. Ellis, H. (2011). Anatomy of the gallbladder and bile ducts. Surgery (Orford) 29 (12): 593–596.
  38. Schmidt, D. et al. (2010). Regulation of bile acid synthesis by fat-soluble vitamins A and D. The Journal of Biological Chemistry 285 (19): 14486–14494.
  39. Houten, S. & Watanabe, M. & Auwerx, J. (2006). Endocrine functions of bile acids. The EMBO Journal 25 (7): 1419–1425. Review.
  40. Ikemoto, S. et al. (1997). Cholate inhibits high-fat diet-induced hyperglycemia and obesity with acyl-CoA synthetase mRNA decrease. American Journal of Physiology 273 (1 Pt 1): E37–45.
  41. Hofmann, A. (1999). The continuing importance of bile acids in liver and intestinal
    disease. Archives of Internal Medicine 159 (22): 2647–2658. Review.
  42. Walcher, T. et.al. (2009). Vitamin C supplement use may protect against gallstones: an observational study on a randomly selected population. BMC Gastroenterology 8;9:74.
  43. Koppisetti, S. et.al. (2008). Reactive oxygen species and the hypomotility of the gall bladder
    as targets for the treatment of gallstones with melatonin: a review. Digestive Diseases and Sciences 53 (10): 2592–2603.
  44. National Institutes of Health. (2012). Human Microbiome Project defines normal bacterial makeup of the body. National Human Genome Research Institute. [luettu: 26.8.2014]
  45. Ley, R. & Peterson, D. & Gordon, J. (2006). Ecological and evolutionary forces shaping
    microbial diversity in the human intestine. Cell 124 (4): 837–848. Review.
  46. Guarner, F. & Malagelada, J. (2003). Gut flora in health and disease. Lancet 2003 361 (9356): 512–519. Review.
  47. Sonomoto, K. & Yokota, A. (2011). Lactic Acid Bacteria and Bifidobacteria: Current Progress in Advanced Research. Norfolk: Caister Academic Press.
  48. Wong, J. & de Souza, R. & Kendall, C. & Emam, A. & Jenkins, D. (2006). Colonic health:
    fermentation and short chain fatty acids. Journal of Clinical Gastroenterology 40 (3): 235–243. Review.
  49. Guarner, F. & Malagelada, J. (2003). Gut flora in health and disease. Lancet 2003 361 (9356): 512–519. Review.
  50. Jernberg, C. & Löfmark, S. & Edlund, C. & Jansson, J. (2010). Long-term impacts of antibiotic
    exposure on the human intestinal microbiota. Microbiology 156 (Pt 11): 3216–3223.
  51. Beaugerie, L. & Petit, J. (2004). Microbial-gut interactions in health and disease.
    Antibiotic-associated diarrhoea. Best Practice and Research Clinical Gastroenterology 18 (2): 337–352. Review.
  52. Thomas, C. & Stevenson, M. & Williamson, D. & Riley, T. V. (2002). Clostridium difficile-associated diarrhea: epidemiological data from Western Australia associated with a modified antibiotic policy. Clinical Infectious Diseases 35 (12): 1457–1462.
  53. Dethlefsen, L. & Huse, S. & Sogin, M. & Relman, D. (2008). The pervasive effects of an
    antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing.
    PLoS Biology 6 (11) :e280.
  54. World Health Organization. (2014). WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health. WHO, Geneva. [luettu: 26.8.2014]
  55. Forsythe, P. & Kunze, W. (2013). Voices from within: gut microbes and the CNS. Cellular and Molecular Life Sciences 70 (1): 55–69 Review.
  56. Cryan, J. & Dinan, T. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience 13 (10): 701–712. Review.
  57. Cryan, J & O’Mahony, S. (2011). The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterology and Motility 23 (3): 187–192.
  58. Grenham, S. & Clarke, G. & Cryan, J. & Dinan, T. (2011). Brain-gut-microbe communication in health and disease. Frontiers in Physiology 2: 94.
  59. Foster, J. & McVey Neufeld, K. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences 36 (5): 305–312. Review.
  60. Mayer, E. (2011). Gut feelings: the emerging biology of gut-brain communication. Nature
    Revies Neuroscience 12 (8): 453–466. Review.
  61. Welgan, P. & Meshkinpour, H. & Beeler, M. (1988). Effect of anger on colon motor and
    myoelectric activity in irritable bowel syndrome. Gastroenterology 94 (5 Pt 1): 1150–1156.
  62. Travagli, R. & Hermann, G. & Browning, K. & Rogers, R. (2006). Brainstem circuits regulating
    gastric function. Annual Review of Physiology 68: 279–305. Review.
  63. Mayer, E. (2000). The neurobiology of stress and gastrointestinal disease. Gut 47: 861–869.
  64. Hughes, D. & Sperandio, V. (2008). Inter-kingdom signalling: communication between bacteria and their hosts. Nature Reviews Microbiology 6: 111–120.
  65. Fasano, A. (2012). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology 42 (1): 71–78.
  66. Hollander, D. (1999). Intestinal permeability, leaky gut, and intestinal disorders. Current Gastroenterology Reports 1 (5): 410–416. Review.
  67. Hietbrink, F. (2009). Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock 32 (4): 374–378.
  68. Frazier, T. & DiBaise, J. & McClain, C. (2011). Gut microbiota, intestinal permeability,
    obesity-induced inflammation, and liver injury. Journal of Parentereral and Enteral Nutrition 35 (5 Suppl): 14S–20S.
  69. Neurath, M. (2014). Cytokines in inflammatory bowel disease. Nature Reviews Immunology 14: 329–342.
  70. Aloisi, F. (2001) Immune function of microglia. Glia 36 (2): 165–179. Review.
  71. Foster, J. & McVey Neufeld, K. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neuroscience 36 (5): 305–312. Review.
  72. Love, B. et al. (2013). Antibiotic exposure and risk of food allergy in children. 2013 Annual Meeting of the American Academy of Allergy, Asthma and Immunology. [luettu: 20.9.2014]
  73. Vadas, P. & Wai, Y. & Burks, W. & Perelman, B. (2001). Detection of peanut allergens in breast
    milk of lactating women. The Journal of the American Medical Association 285 (13): 1746–1748.
  74. Kosecka, U. & Berin, M. & Perdue, M. (1999). Pertussis adjuvant prolongs intestinal
    hypersensitivity. International Archives of Allergy and Immunology 119 (3): 205–211.
  75. Nakayama, T. & Aizawa, C. & Kuno-Sakai, H. (1999). A clinical analysis of gelatin allergy and
    determination of its causal relationship to the previous administration of
    gelatin-containing acellular pertussis vaccine combined with diphtheria and
    tetanus toxoids. The Journal of Allergy and Clinical Immunology 103 (2 Pt 1): 321–325.
  76. O’Hagan, D. (2000). Vaccine Adjuvants. Preparation Methods and Research Protocols. Methods in Molecular Medicine. Humana Press. [luettu: 20.9.2014]
  77. Jerschow, E. et al. (2012). Dichlorophenol-containing pesticides and allergies: results from the US National Health and Nutrition Examination Survey 2005–2006. Annals of Allergy Asthma and Immunology 109 (6): 420–425.
  78. Ortolani, C. & Pastorello, E. (2006). Food allergies and food intolerances. Best Practice & Research: Clinical Gastroenterology 20 (3): 467–483. Review.
  79. David, T. (2000). Adverse reactions and intolerance to foods. British Medical Bulletin 56 (1): 34–50.
  80. Cardinale, F. et al. (2008). Intolerance to food additives: an update. Minerva Pediatrica 60 (6): 1401–1409. Review.
  81. Weidenhiller, M. et al. (2012). Histamine intolerance syndrome (HIS): plethora of physiological, pathophysiological and toxic mechanisms and their differentiation. Zeitschrift für Gastroenterolie 50 (12): 1302–1309.
  82. Maintz, L. & Novak, N. (2007). Histamine and histaminen intolerance. The American Journal of Clinical Nutrition 8 (5): 1185–1196.
  83. David, T. (2000). Adverse reactions and intolerance to foods. British Medical Bulletin 56 (1): 34–50.
  84. Hunt, P. & Susiarjo, M. & Rubio, C. & Hassold, T. (2009). The bisphenol A experience: a primer
    for the analysis of environmental effects on mammalian reproduction. Biology of Reproduction 81 (5): 807–813.
  85. Singh, S. & Li, S. (2012). Epigenetic effects of environmental chemicals bisphenol a and phthalates. International Journal of Molecular Sciences 13 (8): 10143–10153.
  86. Sathyanarayana, S. et al. (2013). Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures. Journal of Exposure Science and Environmental Epidemiology 23 (4): 378–384.
  87. Wagner, M. & Oehlmann, J. (2009). Endocrine disruptors in bottled mineral water: total
    estrogenic burden and migration from plastic bottles. Environmental Science and Pollution Research 16 (3): 278–286.
  88. Puga, A. & Wallace, K. (1998). Molecular Biology of the Toxic Response. CRC Press. pp.285–297. [luettu: 21.9.2014]
  89. Peumans, W. & Van Damme, E. (1995). Lectins as plant defense proteins. Plant Physiology 109 (2): 347-352. Review.
  90. Rüdiger, H. (1998). Plant lectins: More than just tools for glycoscientists: occurrence, structure, and possible functions of plant lectins. Acta Anatomica (Basel) 161 (1–4): 130–152. Review.
  91. Pusztai, A. et al. (1993). Antinutritive effects of wheat-germ agglutinin and other
    N-acetylglucosamine-specific lectins. British Journal of Nutrition 70 (1): 313–321.
  92. Vasconcelos, I. & Oliveira J. (2004). Antinutritional properties of plant lectins. Toxicon 44 (4): 385–403. Review.
  93. Freed, D. (1999). Do dietary lectins cause disease? British Medical Journal 318 (7190): 1023–1024.
  94. Jönsson, T. & Olsson, S. & Ahrén, B. & Bøg-Hansen, T. & Dole, A. & Lindeberg, S. (2005). Agrarian diet and diseases of affluence–do evolutionary novel dietary lectins cause leptin resistance? BMC Endocrine Disorders 5:10.
  95. Forbes, R &, Parker, H. & Erdman, J. Jr. (1984). Effects of dietary phytate, calcium and magnesium levels on zinc bioavailability to rats. Journal of Nutrition 114 (8): 1421–1425.
  96. Speijers, G. (1993). Cyanogenic glycosides. WHO Food Additives Series no. 30.
  97. Coe, F. & Evan, A. & Worcester, E. (2005). Kidney stone disease. Journal of Clinical Investigation 115 (10): 2598–2608. Review.
  98. Holmes, R. & Kennedy, M. (2000). Estimation of the oxalate content of foods and daily
    oxalate intake. Kidney International 57 (4): 1662–1667.
  99. Weiven, C. & Liebman, M. (2005). Oxalate content of legumes, nuts and grain-based flours. Journal of Food Composition and Analysis 18 (7): 723–729.
  100. Francis, G. & Kerem, Z. & Makkar, H. & Becker, K. (2002). The biological action of saponins in
    animal systems: a review. British Journal of Nutrition 88 (6): 587–605. Review.
  101. Shi, J. et.al. (2004). Saponins from edible legumes: chemistry, processing, and health benefits. Journal of Medicinal Food 7 (1): 67–78. Review.
  102. Johnson, I. & Gee, J. & Price, K. & Curl, C. & Fenwick, G. (1986). Influence of saponins on gut
    permeability and active nutrient transport in vitro. Journal of Nutrition 116 (11): 2270–2277.
  103. Keukens, E. et al. (1996). Glycoalkaloids selectively permeabilize cholesterol containing
    biomembranes. Biochimica et Biophysica Acta 1279 (2): 243–250.
  104. Patel, B. et al. (2002). Potato glycoalkaloids adversely affect intestinal permeability and aggravate
    inflammatory bowel disease. Inflammatory Bowel Diseases 8 (5): 340–346.
  105. Friedman, M. (2002). Tomato glycoalkaloids: role in the plant and in the diet. Journal of Agricultural and Food Chemistry 50 (21): 5751–5780. Review.
  106. Fasano, A. (2011). Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiological Reviews 91 (1): 151–175.
  107. Drago, S. et.al. (2006). Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac
    intestinal mucosa and intestinal cell lines. Scandinavian Journal of Gastroenterology
    41 (4): 408–419.
  108. Doerge, D. & Sheehan, D. (2002). Goitrogenic and estrogenic activity of soy isoflavones.
    Environmental Health Perspectives 110 Suppl 3: 349–353. Review.
  109. Greer, M. (1957). Goitrogenic substances in food. American Journal of Clinical Nutrition 5 (4): 440–4.
  110. Sarne, D. (2010). Effects of the Environment, Chemicals and Drugs on Thyroid Function. Thyroid Disease Manager. pp.1–53. [luettu: 15.7.2014]
  111. Thompson, L. & Boucher, B. & Liu, Z. & Cotterchio, M. & Kreiger, N. (2006). Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutrition and Cancer 54 (2): 184–201.
  112. Turner, J. & Agatonovic-Kustrin, S. & Glass, B. (2007). Molecular aspects of phytoestrogen
    selective binding at estrogen receptors.
    Journal of Pharmaceutical Sciences 96 (8): 1879–1885.
    Review.
  113. Patisaul, H. & Jefferson, W. (2010). The pros and cons of phytoestrogens. Frontiers in neuroendocrinology 31 (4): 400–419.
  114. Hamilton-Reeves, J. et al. (2010). Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: results of a meta-analysis. Fertility and Sterility 94 (3): 997–1007.
  115. Tan-Wilson, A. et al. (1987). Soybean Bowman-Birk trypsin insoinhibitors: classification and report of a glycine-rich trypsin inhibitor class. Journal of Agricultural and Food Chemistry 35 (6): 974–981.
  116. Preuss, H. (2009). Bean amylase inhibitor and other carbohydrate absorption blockers:
    effects on diabesity and general health. Journal of American College Nutrition 28 (3): 266–276.
  117. Lalonde, M. (2011). An Organic Chemist’s Perspective on Paleo. Ancestral Health Symposium.
  118. Ibrahim, S. & Habiba, R. & Shatta, A. & Embaby, H. (2002). Effect of soaking, germination,
    cooking and fermentation on antinutritional factors in cowpeas.
    Nahrung 46 (2): 92–95.
  119. Hotz, C. & Gibson, R. (2007). Traditional food-processing and preparation practices to
    enhance the bioavailability of micronutrients in plant-based diets. Journal of Nutrition 37 (4): 1097–1000. Review.
  120. Akande, E. & Fabiyi, E. (2010). Effect of processing methods on some antinutritional factors in legume seeds for poultry feeding. International journal of poultry science 9 (10): 996–10001.
  121. Reddy, N. R. & al. (2001). Food Phytates. CRC Press.
  122. Wong, J. & de Souza, R. & Kendall, C. & Emam, A. & Jenkins, D. (2006). Colonic health:
    fermentation and short chain fatty acids. Journal of Clinical Gastroenterology 40 (3): 235–243. Review.
  123. Gibson, P & Shepherd, S. (2010). Evidence-based dietary management of functional
    gastrointestinal symptoms: The FODMAP approach. Journal of Gastroenterology and Hepatology 25 (2): 252–258.
  124. Ong, D. et al. (2010). Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. Jounal of Gastroenterogiogy and Hepatology 25 (8): 1366–1373.
  125. David, L. et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (7484): 559–563.
  126. Xiao, S. et al. (2014). A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiology Ecology 87 (2): 357–367.
  127. Fasano, A. (2012). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology 42 (1): 71–78. Review.
  128. Jenkins, D. & Kendall, C. & Vuksan, V. (1999). Inulin, oligofructose and intestinal
    function. Journal of Nutrition 129 (7 Suppl): 1431S–1433S. Review.
  129. Kruse, H. & Kleessen, B. & Blaut, M. (1999). Effects of inulin on faecal bifidobacteria in
    human subjects. British Journal of Nutrition 82 (5): 37582.
  130. Savard, P. et al. (2011). Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults. International Journal of Food Microbiology 149 (1): 50–67.
  131. Saxelin, M. (2010). Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese. International Journal of Food Microbiology 144 (2): 293–300.
  132. Haenen, D. (2013). A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. Journal of Nutrition 143 (3): 274–283.
  133. Martínez, I. & Kim, J. & Duffy, P. & Schlegel, V. & Walter, J. (2010). Resistant starches types 2
    and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 5 (11): e15046.
  134. Rastmanesh, R. (2011). High polyphenol, low probiotic diet for weight loss because of
    intestinal microbiota interaction. Chemico-Biological Interactions 189 (1–2): 1–8. Review.
  135. Moore, M. & Goita, M. & Finley, J. (2014). Impact of the Microbiome on Cocoa Polyphenolic Compounds. Department of Nutrition and Food Science, Louisiana State University. National meeting & Exposition of the American Chemical Society.
  136. Ukhanova, M. et al. (2014). Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. British Journal of Nutrition 111 (12): 2146–2152.
  137. Pérez-Cobas, A. et al. (2013). Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62 (11): 1591–1601.
  138. Shehata, A. & Schrödl, W. & Aldin, A. & Hafez, H. & Krüger, M. (2013). The effect of glyphosate
    on potential pathogens and beneficial members of poultry microbiota in vitro. Current Microbiology 66 (4): 350–358.
  139. Samsel, A. & Seneff, S. (2013). Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdisciplinary Toxicology 6 (4): 159–184. Review.
  140. Massarrat, S. (2008). Smoking and gut. Arcives of Iranian Medicine 11 (3): 293–305.
  141. Purohit, V. et al. (2008). Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol (Fayettevlle, N.Y.) 42 (5): 349–361.
  142. la Fleur, S. & Wick, E. & Idumalla, P. & Grady, E. & Bhargava, A. (2005). Role of peripheral corticotropin-releasing factor and urocortin II in intestinal inflammation and motility in terminal ileum. Proceedings of the National Academy of Sciences 102: 7647–7652.
  143. Maier, S. & Watkins, L. (1998). Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychological Reviews 105 (1): 83–107. Review.
  144. Forsythe, P. & Sudo, N. & Dinan, T. & Taylor, V. & Bienenstock, J. (2010). Mood and gut feelings.
    Brain Behavior and Immunity 24 (1): 9–16. Review.
  145. Dimidi, E. & Christodoulides, S. & Fragkos, K. & Scott, S. & Whelan, K. (2014). The effect of
    probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition 100 (4): 1075–1084.
  146. Salari, P. & Nikfar, S. & Abdollahi, M. (2012). A meta-analysis and systematic review on the
    effect of probiotics in acute diarrhea. Inflammation and Allergy Drug Targets 11 (1): 3–14. Review.
  147. McFarland, L. (2007). Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Medicine and Infectious Disease 5 (2): 97–105.
  148. Nikfar, S. & Rahimi, R. & Rahimi, F. & Derakhshani, S. & Abdollahi, M. (2008). Efficacy of probiotics in irritable bowel syndrome: a meta-analysis of randomized, controlled trials. The Diseases of Colon and Rectum 51 (12): 1775–1780.
  149. Shen, J. & Zuo, Z. & Mao, A. (2014). Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn’s disease, and pouchitis: meta-analysis of randomized controlled trials. Inflammatory Bowel Diseases 20 (1): 21–35.
  150. Sang, L. et al. (2010). Remission induction and maintenance effect of probiotics on ulcerative colitis: a meta-analysis. World Journal of Gastroenterology 16 (15): 1908–1915.
  151. Ma ,Y. et al. (2013). Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World Journal of Gastroenterology 19 (40): 6911–6918. Review.
  152. Kang, E. & Kim, S. & Hwang, H. & Ji, Y. (2013). The effect of probiotics on prevention of
    common cold: a meta-analysis of randomized controlled trial studies. Korean Journal of Family
    Medicine 34 (1): 2–10.
  153. Hempel, S. et al. (2012). Probiotics for the prevention and treatment of antibiotic-associated
    diarrhea: a systematic review and meta-analysis. The Journal of the American Medical Association 307 (18): 1959–1969. Review.
  154. Plengvidhya, V. & Breidt, F. Jr. & Lu, Z. & Fleming, H. (2007). DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Applied and Environmental Microbiology 73 (23): 7697–7702.
  155. Scholz-Ahrens, K. & Schrezenmeir, J. (2007). Inulin and oligofructose and mineral metabolism: the evidence from animal trials. The Journal of Nutrition 137 (11 Suppl): 2513S–2523S. Review.
  156. Lomax, A. & Calder, P. (2009). Prebiotics, immune function, infection and inflammation: a review of the evidence. British Journal of Nutrition 101 (5): 633–658. Review.
  157. Geier, M. & Butler, R. & Howarth, G. (2006). Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer? Cancer Biology and Therapy 5 (10): 1265–1269. Review.
  158. Grabitske, H. & Slavin, J. (2009). Gastrointestinal effects of low-digestible carbohydrates. Critical Reviews in Food Science and Nutrition 49 (4): 327–360. Review.
  159. Harazaki, T. & Inoue, S. & Imai, C. & Mochizuki, K. & Goda, T. (2014). Resistant starch improves
    insulin resistance and reduces adipose tissue weight and CD11c expression in rat OLETF adipose tissue. Nutrition 30 (5): 590–595.
  160. Higgins, J. (2011). Resistant starch and exercise independently attenuate weight regain on a high fat diet in a rat model of obesity. Nutrition and Metabolism (Lond) 8: 49.
  161. Belobrajdic, D. & King, R. & Christophersen, C. & Bird, A. (2012). Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats. Nutrition and Metabolism (Lond) 9 (1): 93.
  162. Robertson, M. (2012). Insulin-sensitizing effects on muscle and adipose tissue after dietary fiber intake in men and women with metabolic syndrome. The Journal of Clinical Endocrinology and Metabolism 97 (9): 3326–3332.
  163. Higgins, J. (2014). Resistant starch and energy balance: impact on weight loss and maintenance. Critical Reviews in Food Science and Nutrition 54 (9): 1158–1566. Review.
  164. Nichenametla, S. et al. (2014). Resistant starch type 4-enriched diet lowered blood cholesterols and improved body composition in a double blind controlled cross-over intervention. Molecular Nutrition and Food Research 58 (6): 1365–1369.
  165. Kwak, J. et al. (2012). Dietary treatment with rice containing resistant starch improves markers of endothelialfunction with reduction of postprandial blood glucose and oxidative stress in patients with prediabetes or newly diagnosed type 2 diabetes. Atherosclerosis 224 (2): 457–464.
  166. Moshfegh, A. & Friday, J. & Goldman, J. & Ahuja, J. (1999). Presence of inulin and
    oligofructose in the diets of Americans. Journal of Nutrition 129 (7 Suppl): 1407S–1411S.
  167. Vermeulen, M. & Klöpping-Ketelaars, I. & van den Berg, R. & Vaes, W. (2008). Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli. Journal Agricultural and Food Chemistry 56 (22): 10505–10509.
  168. Dewanto, V. & Wu, X. & Adom, K. K. & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry 50 (10): 3010–4.
  169. Seiquer, I. et al. (2006). Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11–14 y. The American Journal of Clinical Nutrition 83 (5): 1082–1088.
  170. Stadler, R. H. & Blank, I. & Varga, N. & Robert, F. & Hau, J. & Guy, P. A. & Robert, M. C. & Riediker, S. (2002). Acrylamide from Maillard reaction products. Nature 419 (6906): 449–450.
  171. Yamagishi, S. et al. (2012). Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochimica et Biophysica Acta 1820 (5): 663–671.
  172. Birlouez-Aragon, I. et al. (2010). A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. The American Journal of Clinical Nutrition 91 (5): 1220–1226.
  173. Uribarri, J. et.al. (2010). Advanced glycation end products in foods and a practical guide to
    their reduction in the diet. Journal of the American Dietic Association 110 (6): 911–916.e12.
  174. Bassioni, G. & Mohammed, F. S. & Al Zubaidy, E. & Kobrsi, I. (2012). Risk Assessment of Using Aluminum Foil in Food Preparation. International Journal of Electrochemical Science 7:4498–4509.
  175. Viegas, O. & Amaro, L. F. & Ferreira, I. M. & Pinho, O. (2012). Inhibitory effect of antioxidant-rich marinades on the formation of heterocyclic aromatic amines in pan-fried beef. Journal of Agricultural Food and Chemistry 60 (24): 6235–6240.
  176. Melo, A. & Viegas, O. & Petisca, C. & Pinho, O. & Ferreira, I. M. (2008). Effect of beer/red wine marinades on the formation of heterocyclic aromatic amines in pan-fried beef. Journal of Agricultural and Food Chemistry 56 (22): 10625–10632.
  177. Platt, K. L. & Edenharder, R. & Aderhold, S. & Muckel, E. & Glatt, H. (2010). Fruits and vegetables protect against the genotoxicity of heterocyclic aromatic amines activated by human xenobiotic-metabolizing enzymes expressed in immortal mammalian cells. Mutation Research. 703 (2): 90–98.
  178. Balogh, Z. & Gray, J. I. & Gomaa, E. A. & Booren, A. M. (2000). Formation and inhibition of heterocyclic aromatic amines in fried ground beef patties. Food and Chemical Toxicology 38 (5): 395–401.
  179. Vinson, J. & Howard, T. B. (1996). Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. Journal of Nutritional Biochemistry 12 (7): 659–663.
  180. Tang, Y. & Chen, A. (2014). Curcumin eliminates the effect of advanced glycation end-products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Laboratory Investigation 94 (5): 503–516.
  181. Persson, E. & Graziani, G. & Ferracane, R. & Fogliano, V. & Skog, K. (2003). Influence of antioxidants in virgin olive oil on the formation of heterocyclic amines in fried beefburgers. Food and Chemical Toxicology 41 (11): 1587–1597.
  182. Uribarri, J. et al. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association 110 (6): 911–16.e12.
  183. Skog, K. (1993). Cooking procedures and food mutagens: a literature review. Food and Chemical Toxicology 31 (9): 655–675. Review.
  184. Skog, K. & Viklund, G. & Olsson, K. & Sjöholm, I. (2008). Acrylamide in home-prepared roasted potatoes. Molecular Nutrition & Food Research 52 (3): 307–312.
  185. Bråthen, E. & Kita, A. & Knutsen, S. H. & Wicklund, T. (2005). Addition of glycine reduces the content of acrylamide in cereal and potato products. Journal of Agricultural and Food Chemistry 53 (8): 3259–3264.
  186. Chiavaro, E. & Mazzeo, T. & Visconti, A. & Manzi, C. & Fogliano, V. & Pellegrini, N. (2012). Nutritional quality of sous vide cooked carrots and brussels sprouts. Journal of Agricultural and Food Chemistry 60 (23): 6019–6025.
  187. Narciso-Gaytán, C. & Shin, D. & Sams, A. R. & Keeton, J. T. & Miller, R. K. & Smith, S. B. & Sánchez-Plata, M. X. (2011). Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat. Poultry Science 90 (2): 473–480.
  188. Shishu & Kaur, I. P. (2003). Inhibition of mutagenicity of food-derived heterocyclic amines by sulforaphane, a constituent of broccoli. Indian Journal of Experimental Biology 41 (3): 216–209.
  189. Ghawi, S. K. & Methven, L. & Niranjan, K. (2013). The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chemistry 138 (2–3): 1734–1741.
  190. Valtion ravitsemusneuvottelukunta. Ravitsemussuositukset kuvaavat väestöjen ja ihmisryhmien energian ja ravintoaineiden tarvetta tai suositeltavaa saantia. Maa- ja metsätalousministeriö. [luettu: 9.10.2014]
  191. Stover, P. (2006). Influence of human genetic variation on nutritional requirements. The American Journal Clinical Nutrition 83 (2): 436S–442S. Review.
  192. Zeisel, S. (2011). Nutritional genomics: defining the dietary requirement and effects of choline. The Journal of Nutrition 141 (3): 531–534. Review.
  193. Ames, B. & Atamna, H. & Killilea, D. (2005). Mineral and vitamin deficiencies can accelerate the mitochondrial decay of aging. Molecular Aspects of Medicine 26 (4–5): 363–£78. Review.
  194. Ames, B. (2006). Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proceedings of the National Academy of Sciences of the United States of America 103 (47): 17589–17594. Review.
  195. Hargrove, J. (2006). History of the calorie in nutrition. The Journal of Nutrition 136 (12): 2957–2961.
  196. Peters, L. (1918). Diet and health with key to the calories. Chicago: Reilly and Lee.
  197. Hopkins, F. (1912). Feeding experiments illustrating the importance of accessory factors in normal dietaries. The Journal of Physiology 44: 425–460.
  198. Semba, R. (2012). The historical evolution of thought regarding multiple micronutrient nutrition. The Journal of Nutrition 142 (1): 143S–156S. Review.
  199. The Norwegian University of Science and Technology (NTNU). (2011). Feed your genes: How our genes respond to the foods we eat. ScienceDaily.
  200. Eichner, J. E. & Dunn, S. T. & Perveen, G. & Thompson, D. M. & Stewart, K. E. & Stroehla, B. C. (2002). Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. American journal of epidemiology 155 (6): 487–495. Review.
  201. Filippini, N. & MacIntosh, B. J. & Hough, M. G. & Goodwin, G. M. & Frisoni, G. B. & Smith, S. M. & Matthews, P. M. & Beckmann, C. F. & Mackay, C. E. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America 106 (17): 7209–7214.
  202. Stumvoll, M. & Häring, H. (2002). The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism. Diabetes 51 (8): 2341–2347. Review.
  203. Heikkinen, S. & Argmann, C. & Feige, J. N. & Koutnikova, H. & Champy, M. F. & Dali-Youcef, N. & Schadt, E. E. & Laakso, M. & Auwerx, J. (2009). The Pro12Ala PPARgamma2 variant determines metabolism at the gene-environment interface. Cell Metabolism 9 (1): 88–98.
  204. Scott, L. J. et al. (2006). Association of transcription factor 7-like 2 (TCF7L2) variants with type 2 diabetes in a Finnish sample. Diabetes 55 (9): 2649–2653.
  205. Kurokawa, N. & Young, E. H. & Oka, Y. & Satoh, H. & Wareham, N. J. & Sandhu, M. S. & Loos, R. J. (2008). Then ADRB3 Trp64Arg variant and BMI: a meta-analysis of 44 833 individuals. International Journal of Obesity 32 (8): 1240–1249.
  206. Arner, P. & Hoffstedt, J. (1999). Adrenoceptor genes in human obesity. Journal of International Medicine 245 (6): 667–672. Review.
  207. Wellcome Trust Case Control Consortium. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447 (7145): 661–678.
  208. Frayling, T. M. & al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316 (5826): 889–894.
  209. Corella, D. & Arregui, M. & Coltell, O. & Portolés, O. & Guillem-Sáiz, P. & Carrasco, P. & Sorlí, J. V. & Ortega-Azorín, C. & González, J. I. & Ordovás, J. M. (2011). Association of the LCT-13910C>T polymorphism with obesity and its modulation by dairy products in a Mediterranean population. Obesity (Silver Spring) 19 (8): 1707–1714.
  210. Bersaglieri, T. & Sabeti, P. C. & Patterson, N. & Vanderploeg, T. & Schaffner, S. F. & Drake, J. A. & Rhodes, M. & Reich, D. E. & Hirschhorn, J. N. (2004) Genetic signatures of strong recent positive selection at the lactase gene. American Journal of Human Genetics 74 (6): 1111–1120.
  211. Vives-Pi, M. & Takasawa, S. & Pujol-Autonell, I. & Planas, R. & Cabre, E. & Ojanguren, I. & Montraveta, M. & Santos, A. L. & Ruiz-Ortiz, E. (2013). Biomarkers for diagnosis and monitoring of celiac disease. Journal of Clinical Gastroenterology 47 (4): 308–313. Review.
  212. van den Wildenberg, E. & Wiers, R. W. & Dessers, J. & Janssen, R. G. & Lambrichs, E. H. & Smeets, H. J. & van Breukelen, G. J. (2007). A functional polymorphism of the mu-opioid receptor gene (OPRM1) influences cue-induced craving for alcohol in male heavy drinkers. Alcoholism: Clinical and Experimental Research 31 (1): 1–10.
  213. Sookoian, S. & Pirola, C. J. (2011). Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 53 (6): 1883–1894. Review.
  214. Cornelis, M. C. & El-Sohemy, A. & Kabagambe, E. K. & Campos, H. (2006). Coffee, CYP1A2 genotype, and risk of myocardial infarction. The Journal of the American Medical Association 295 (10): 1135–1141.
  215. Palatini, P. et al. (2009). CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. Journal of Hypertension 27 (8): 1594–1601.
  216. Alfthan, G. & Laurinen, M. & Valsta, L. & Pastinen, T. & Aro, A. (2003). Folate intake, plasma folate and homocysteine status in a random Finnish population. European Journal of Clinical Nutrition 57 (1): 81–88.
  217. Neville, M. & Johnstone, E. & Walton, R. (2004). Identification and characterization of
    ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Human
    Mutatation 23 (6): 540–545.
  218. Blum, K. & Oscar-Berman, M. & Barh, D. & Giordano, J. & Gold, M. (2013). Dopamine Genetics and Function in Food and Substance Abuse. Journal of Genetic Syndrome and Gene Therapy 4 (121). pii: 1000121.
  219. Ariza, M. et al. (2012). Dopamine genes (DRD2/ANKK1-TaqA1 and DRD4-7R) and executive
    function: their interaction with obesity. PLoS One 7 (7): e41482.
  220. Kilcoyne, B. et.al. (2014). Alcohol consumption mediates the relationship between ADH1B and DSM-IV alcohol use disorder and criteria. Journal of Studies on Alcohol and Drugs 75 (4): 635–642.
  221. Quertemont, E. (2004). Genetic polymorphism in ethanol metabolism: acetaldehyde
    contribution to alcohol abuse and alcoholism. Molecular Psychiatry 9 (6): 570–581. Review.
  222. Calton, J. (2010). Prevalence of micronutrient deficiency in popular diet plans. Journal of the International Society of Sports Nutrition 7:24.
  223. Barański, M. et al. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. The British Journal of Nutrition 26:1–18.
  224. Sarkkinen, E. et al. (2011). Feasibility and antihypertensive effect of replacing regular salt with mineral salt -rich in magnesium and potassium- in subjects with mildly elevated blood pressure. Nutrition Journal 10: 88.
  225. O’Donnell, M. & Mente, A. & Rangarajan, S. et al. (2014). Urinary sodium and potassium excretion, mortality, and cardiovascular events. The New England Journal of Medicine 371 (7): 612–623.
  226. Malik, V. et al. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33 (11): 2477–2483.
  227. Malik, V. et al. (2010). Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121 (11): 1356–1364. Review.
  228. Brown, C. & Dulloo, A. & Montani, J. (2008). Sugary drinks in the pathogenesis of obesity and cardiovascular diseases. International Journal of Obesity 32 Suppl 6:S28–34. Review.
  229. Welsh, J. & Sharma, A. & Cunningham, S. & Vos, M. (2011). Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation 123 (3): 249–257.
  230. de la Monte, S. & Wands, J. (2008). Alzheimer’s disease is type 3 diabetes-evidence reviewed. Journal of Diabetes Science and Technology 2 (6): 1101–1113.
  231. Moreira, P. (2013). High-sugar diets, type 2 diabetes and Alzheimer’s disease. Current Opinion in Clinical Nutrition and Metabolic Care 16 (4): 440–445. Review.
  232. Chiu, S. et al. (2014). Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. European Journal of Clinical Nutrition 68 (4): 416–423.
  233. Avena, N. & Rada, P. & Hoebel, B. (2008). Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neuroscience and Behavioral Reviews 32 (1): 20–39. Review.
  234. Miceli Sopo, S. & Greco, M. & Monaco, S. & Varrasi, G. & Di Lorenzo, G. & Simeone, G. (2014). Effect of multiple honey doses on non-specific acute cough in children. An open randomised study and literature review. Allergologia et Immunopathologia S0301–0546 (14): 00129–3.
  235. Wagner, J. B. & Pine, H. S. (2013). Chronic cough in children. Pediatric Clinics of North America 60 (4): 951–967.
  236. Mishra, S. & Palanivelu, K. (2008). The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Annals of Indian Academy of Neurology 11 (1): 13–19.
  237. Chandran, B. & Goel, A. (2012). A randomized, pilot study to assess the efficacy and
    safety of curcumin in patients with active rheumatoid arthritis. Phytotherapy Research 26 (11): 1719–1725.
  238. Park, C. et al. (2007). Curcumin induces apoptosis and inhibits prostaglandin E(2) production in
    synovial fibroblasts of patients with rheumatoid arthritis. International Journal of Molecular Medicine 20 (3): 365–372.
  239. Hanai, H. & Sugimoto, K. (2009). Curcumin has bright prospects for the treatment of
    inflammatory bowel disease. Current Pharmacological Design 15 (18): 2087–2094. Review.
  240. Moghadamtousi, S. et al. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Research International 2014: 186864.
  241. Bar-Sela, G. & Epelbaum, R. & Schaffer, M. (2010). Curcumin as an anti-cancer agent: review
    of the gap between basic and clinical applications. Current Medical Chemistry 17 (3): 190–197. Review.
  242. Wilken, R. & Veena, M. & Wang, M. & Srivatsan, E. (2011). Curcumin: A review of anti-cancer
    properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular
    Cancer 10: 12. Review.
  243. Larsson, S. & Wolk, A. (2006). Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. International Journal of Cancer 119 (11): 2657–2664.
  244. Micha, R. & Mozaffarian, D. (2012). Unprocessed Red and Processed Meats and Risk of Coronary Artery Disease and Type 2 Diabetes – An Updated Review of the Evidence. Current Atherosclerosis Reports 14 (6): 515–552
  245. Kaluza, J. & Wolk, A. & Larsson, S. (2012). Red meat consumption and risk of stroke: a meta-analysis of prospective studies. Stroke 43 (10): 2556–2560.
  246. Huang, W. et al. (2013). Red and processed meat intake and risk of esophageal adenocarcinoma: a meta-analysis of observational studies. Cancer Causes and Control 24 (1): 193–201.
  247. Zhu, H. et al. (2013). Red and processed meat intake is associated with higher gastric cancer risk: a meta-analysis of epidemiological observational studies. PLoS One 8 (8): e70955.
  248. O’Sullivan, T. et al. (2013). Food sources of saturated fat and the association with mortality: a meta-analysis. American Journal of Public Health 103: e31–42.
  249. McDaniel, J. & Askew, W. & Bennett, D. (2013). Bison meat has a lower atherogenic risk than beef in healthy men. Nutrition Research 33 (4): 293–302.
  250. Leheska, J. et al. (2008). Effects of conventional and grass-feeding systems on the nutrient composition of beef. Journal of Animal Sciences 86 (12): 3575–3585.
  251. Sun, L. & Sadighi Akha A. & Miller, R. & Harper, J. (2009). Life-span extension in mice by
    preweaning food restriction and by methionine restriction in middle age. The Journals of
    Gerontology Series A: Biological Sciences and Medical Sciences 64 (7): 711–722.
  252. López-Torres, M. & Barja, G. (2008). Lowered methionine ingestion as responsible for the
    decrease in rodent mitochondrial oxidative stress in protein and dietary
    restriction possible implications for humans. Biochimica et Biophysica Acta 1780 (11): 1337–1347. Review.
  253. Sanchez-Roman, I. & Barja, G. (2013). Regulation of longevity and oxidative stress by
    nutritional interventions: role of methionine restriction. Experimental Gerontology 48 (10): 1030–1042. Review.
  254. Brind, J. et al. (2011). Dietary glycine supplementation mimics lifespan extension by dietary restriction in Fisher 344 rats. The FASEB Journal Supplement 528.2.
  255. Díaz-Flores, M. et al. (2013). Oral supplementation with glycine reduces oxidative stress
    in patients with metabolic syndrome, improving their systolic blood pressure. Canadian
    Journal of Physiology and Pharmacology 91 (10): 855–860.
  256. White, D. & Collinson, A. (2013). Red meat, dietary heme iron, and risk of type 2
    diabetes: the involvement of advanced lipoxidation endproducts. Advances in Nutrition 4 (4): 403–411. Review.
  257. Elintarviketurvallisuusvirasto Evira. (2013). Kalan syöntisuositukset. Evira. [luettu: 12.10.2014]
  258. United Nations Environment Programme. (2013). Minamata Convention on Mercury. Geneva, Switzerland. [luettu: 12.10.2014]
  259. Sidhu, K. (2003). Health benefits and potential risks related to consumption of fish
    or fish oil. Regulatory Toxicology and Pharmacology 38 (3): 336–344.
  260. Leung Yinko, S. & Stark, K. & Thanassoulis, G. & Pilote, L. (2014). Fish consumption and acute
    coronary syndrome: a meta-analysis. American Journal of Medicine 127 (9): 848–857.e2.
  261. Song, J. & Su, H &, Wang, B. & Zhou, Y. & Guo, L. (2014). Fish consumption and lung cancer risk: systematic review and meta-analysis. Nutrition and Cancer (4): 539–549.
  262. Zhang, M. & Picard-Deland, E. & Marette, A. (2013). Fish and marine omega-3 polyunsatured
    Fatty Acid consumption and incidence of type 2 diabetes: a systematic review and
    meta-analysis. International Journal of Endocrinology 2013: 501015. Review.
  263. Rylander, C. & Sandanger, T. & Engeset D, Lund E. (2014). Consumption of lean fish reduces
    the risk of type 2 diabetes mellitus: a prospective population based cohort study
    of Norwegian women. PLoS One 9 (2): e89845.
  264. Wu, J. & Cahill, L. & Mozaffarian, D. (2013). Effect of fish oil on circulating
    adiponectin: a systematic review and meta-analysis of randomized controlled
    trials. The Journal of Clinical Endocrinology and Metabolism 98 (6): 2451–2459. Review.
  265. Iwabu, M. et al. (2010). Adiponectin and AdipoR1 regulate
    PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464 (7293): 1313–1319.
  266. Foran J. et al. (2005). Quantitative analysis of the benefits and risks of consuming farmed and wild salmon. The Journal of Nutrition 135 (11): 2639–2643.
  267. Hites, R. et al. (2004). Global assessment of organic contaminants in farmed salmon. Science 303 (5655): 226–229.
  268. Foran, J. et al. (2005). Risk-based consumption advice for farmed Atlantic and wild Pacific salmon contaminated with dioxins and dioxin-like compounds. Environmental Health Perspectives 113 (5): 552–526.
  269. Fineli. (2014). Osteri, punnittu kuorineen. Terveyden ja Hyvinvoinnin Laitos. [luettu: 18.10.2014]
  270. Holmström, K. (2003). Antibiotic use in shrimp farming and implications for environmental impacts and human health. International Journal of Food Science and Technology 38 (3): 255–256.
  271. Vishwanathan, R. et al. (2009). Consumption of 2 and 4 egg yolks/d for 5 wk increases macular pigment concentrations in older adults with low macular pigment taking cholesterol-lowering statins. The American Journal of Clinical Nutrition 90 (5): 1272–1279.
  272. Fernandez, M. (2006). Dietary cholesterol provided by eggs and plasma lipoproteins in healthy populations. Current Opinions in Clinical Nutrition and Metabolic Care 9 (1): 8–12. Review.
  273. Rong, Y. et al. (2013). Egg consumption and risk of coronary heart disease and stroke: dose-response meta-analysis of prospective cohort studies. British Medical Journal 346: e8539. Review.
  274. Shin, J. & Xun, P. & Nakamura, Y. & He, K. (2013). Egg consumption in relation to risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. The American Journal of Clinical Nutrition 98 (1): 146–159. Review.
  275. Goodrow, E. (2006). Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. The Journal of Nutrition 136 (10): 2519–2524.
  276. Maataloustilastot. (2014). Kananmunien tuotanto 2014, 2. vuosineljännes -tutkimus. Tilastokeskus. [luettu: 12.7.2014]
  277. Maito ja terveys. (2012). Maito ja maitovalmisteet Suomessa: tuotanto ja kulutus. Tilastokeskus. [luettu: 18.10.2014]
  278. Segall, J. (1994). Dietary lactose as a possible risk factor for ischaemic heart disease: review of epidemiology. International Journal of Cardiology 46 (3): 197–207.
  279. Segall, J. (2002). Plausibility of dietary lactose as a coronary risk factor. Journal of Nutritional and Environmental Medicine 12: 217–229.
  280. Moss M. & Freed. D. (2003). The cow and the coronary: epidemiology, biochemistry and immunology. International Journal of Cardiology 87: 203–216.
  281. Bonthuis, M. & Hughes, M. & Ibiebele, T. & Green, A. & van der Pols, J. (2010). Dairy
    consumption and patterns of mortality of Australian adults. European Journal of Clinical Nutrition 64 (6): 569–577.
  282. Holmberg, S. & Thelin, A. (2013). High dairy fat intake related to less central obesity: a
    male cohort study with 12 years’ follow-up. Scandinavian Journal of Primary Health Care 31 (2): 89–94.
  283. Ericson, U. et al. (2014). Food sources of fat may clarify the earlier inconsistent role of dietary fat intake for incidence of type 2 diabetes. European Association for the Study of Diabetes 2014 Meeting September 16, 2014; Vienna, Austria.
  284. Mozaffarian, D. et al. (2010). Trans-Palmitoleic Acid, Metabolic Risk Factors, and New-Onset Diabetes in U.S. Adults. Annals of Internal Medicine 12: 790–799.
  285. Bartley, J. & McGlashan, S. (2010). Does milk increase mucus production? Medical Hypotheses 74 (4): 732–734.
  286. Lill, C. et al. (2011). Milk allergy is frequent in patients with chronic sinusitis and nasal polyposis.
    American Journal of Rhinology and Allergy 25 (6): e221–224.
  287. Bolland, M. et al. (2010). Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. British Medical Journal 341: c3691.
  288. Del Gobbo, L. et.al. (2013). Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. American Journal of Clinical Nutrition (1): 160–173 Review.
  289. Sahmoun, A. & Singh, B. (2010). Does a higher ratio of serum calcium to magnesium increase the risk for postmenopausal breast cancer? Medical Hypotheses 75 (3): 315–318.
  290. Kousa, A. et al. (2006). Calcium:magnesium ratio in local groundwater and incidence of acute myocardial infarction among males in rural Finland. Environmental Health Perspectives 114 (5): 730–734.
  291. Michaëlsson K. et al. (2014). Milk intake and risk of mortality and fractures in women and men:
    cohort studies. British Medical Journal 349: g6015.
  292. Sodhi, M. & Mukesh, M. & Kataria, R. & Mishra, B. & Joshii, B. (2012). Milk proteins and human health: A1/A2 milk hypothesis. Indian Journal Endocrinology and Metabolism 16 (5) :856.
  293. Ho, S. & Woodford, K. & Kukuljan, S. & Pal, S. (2014). Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: a blinded randomised cross-over pilot study. European Journal of Clinical Nutrition 68 (9): 994–1000.
  294. Ul Haq, M. & Kapila, R. & Sharma, R. & Saliganti, V. & Kapila, S. (2014). Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. European Journal of Nutrition 53 (4): 1039–1049.
  295. Hebeisen, D. (1993). Increased concentrations of omega-3 fatty acids in milk and platelet rich plasma of grass-fed cows. International Journal of Vitamin and Nutrition Research 63 (3): 229–233.
  296. Couvreur, S. et al. (2006). The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science 89 (6): 1956–1969.
  297. Palupi, E. & Jayanegara, A. & Ploeger, A. & Kahl, J. (2012). Comparison of nutritional quality
    between conventional and organic dairy products: a meta-analysis. Journal of the Science of Food and Agriculture 92 (14): 2774–2781. Review.
  298. Maataloustilastot. (2013). Ravintotase. Tilastokeskus. [luettu: 19.10.2014]
  299. Esmaillzadeh, A. & Mirmiran, P. & Azizi, F. (2005). Whole-grain consumption and the metabolic
    syndrome: a favorable association in Tehranian adults. European Journal of Clinical Nutrition 59 (3): 353–362. [table 2]
  300. Andersson, A. et al. (2007). Whole-grain foods do not affect insulin sensitivity or markers of
    lipid peroxidation and inflammation in healthy, moderately overweight subjects. The Journal of
    Nutrition 137 (6): 1401–1407.
  301. Steffen L. et al. (2003). Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. The American Journal of Clinical Nutrition 78 (3): 383–390.
  302. Heber, D. (2004). Vegetables, fruits and phytoestrogens in the prevention of diseases.
    Journal of Postgraduate Medicine 50 (2): 145–149. Review.
  303. Fasano, A. (2011). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology 42 (1): 71–78.
  304. Fasano, A. (2009). Surprises from celiac disease. Scientific American 301:54–61.
  305. Sapone, A. et al. (2011). Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Medicine 9:23.
  306. Catassi, C. et al. (2013). Non-Celiac Gluten sensitivity: the new frontier of gluten related disorders. Nutrients 5 (10): 3839–3853.
  307. Biesiekierski, J. & Muir, J. & Gibson, P. (2013). Is gluten a cause of gastrointestinal
    symptoms in people without celiac disease? Current Allergy and Asthma Reports 13 (6): 631–638.
  308. Sofi, F. et al. (2014). Effect of Triticum turgidum subsp. turanicum wheat on irritable bowel syndrome: a double-blinded randomised dietary intervention trial. British Journal of Nutrition 111 (11): 1992–1999.
  309. Eswaran, S. & Goel, A. & Chey, W. (2013). What role does wheat play in the symptoms of irritable bowel syndrome? Gastroenterology and Hepatology 9 (2): 85–91.
  310. Behall, K. & Howe, J. (1995). Effect of long-term consumption of amylose vs amylopectin starch on metabolic variables in human subjects. The American Journal of Clinical Nutrition 61 (2): 334–340.
  311. Kasvisten ravintosisältö. Juurekset. Kotimaiset Kasvikset ry. [luettu: 26.10.2014]
  312. Forsius, A. (1994). Perunan historiaa. Suomen Lääkärilehti 24: 2377. [luettu: 26.10.2014]
  313. King, J. & Slavin, J. (2013). White potatoes, human health, and dietary guidance. Advances in
    Nutrition 4 (3): 393S–401S. Review.
  314. Erdmann, J. & Hebeisen, Y. & Lippl, F. & Wagenpfeil, S., & Schusdziarra, V. (2007). Food intake and plasma ghrelin response during potato-, rice- and pasta-rich test meals. European Journal of
    Nutrition 46 (4): 196–203.
  315. Mensinga, T. et al. (2005). Potato glycoalkaloids and adverse effects in humans: an
    ascending dose study. Regulatory Toxicology and Pharmacology 41 (1): 66–72.
  316. Bovell-Benjamin, A. (2007). Sweet potato: a review of its past, present, and future
    role in human nutrition. Advances in Food and Nutrition Research 52: 1–59. Review.
  317. Scott-Dixon, K. & St.Pierre, B. (2014). Sweet vs. regular potatoes. Which are really healthier? Precision Nutrition. [luettu: 26.10.2014]
  318. Helldán, A. et al. (2012). Finravinto 2012 -tutkimus. Terveyden ja Hyvinvoinnin Laitos. [luettu: 5.11.2014]
  319. Wang, X. et al. (2014). Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. British Medical Journal 349: g4490. Review.
  320. Schweiggert, R. et al. (2014). Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. British Journal of Nutrition 111 (3): 490–498.
  321. Brown, M. et al. (2004). Carotenoid bioavailability is higher from salads ingested with full-fat than
    with fat-reduced salad dressings as measured with electrochemical detection. The American Journal of Clinical Nutrition 80 (2): 396–403.
  322. Lee, Y. & Low, K. & Siah, K. & Drummond, L. & Gwee, K. (2012). Kiwifruit (Actinidia deliciosa)
    changes intestinal microbial profile. Microbial Ecology in Health and Disease 23.
  323. Chang, C. et al. (2010). Kiwifruit improves bowel function in patients with irritable bowel syndrome with constipation. Asia Pacific Journal of Clinical Nutrition 19 (4): 451–457.
  324. Iwasawa, H. & Morita, E. & Yui, S. & Yamazaki, M. (2011). Anti-oxidant effects of kiwi fruit in
    vitro and in vivo. Biological and Pharmaceutical Bulletin 34 (1): 128–134.
  325. Kortelainen, A. (2007). Kotimaisten ja maahantuotujen elintarvikkeiden kemiallinen turvallisuus. Pro Gradu -tutkielma. Kuopion Yliopisto. [luettu: 4.11.2014]
  326. Kortelainen, A. (2007). Kotimaisten ja maahantuotujen elintarvikkeiden kemiallinen turvallisuus. Pro Gradu -tutkielma. Kuopion Yliopisto. [luettu: 24.11.2014]
  327. Törhönen, R. & Riihinen, K. & Sarkkinen, E. (2013). Selvitys marjojen terveysvaikutusten kliinisestä tutkimusnäytöstä. Itä-Suomen Yliopisto. [luettu: 22.11.2014]
  328. Andres-Lacueva, C. et al. (2005). Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutritional Neuroscience 8 (2): 111–120.
  329. Basu, A. et al. (2010). Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. The Journal of Nutrition 140 (9): 1582–1587.
  330. Lacombe, A. et al. (2013). Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS One 8 (6): e67497.
  331. Nakaishi, H. & Matsumoto, H. & Tominaga, S. & Hirayama, M. (2000). Effects of black current anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Alternative Medicine Review 5 (6): 553–562.
  332. Kalt, W. & Hanneken, A. & Milbury, P. & Tremblay F. (2010). Recent research on polyphenolics in
    vision and eye health. Journal of Agricultural and Food Chemistry 58 (7): 4001–4007.
  333. Tietoa elintarvikkeista. (2013). Ulkomaiset pakastemarjat. Elintarviketurvallisuusvirasto Evira. [luettu: 22.11.2014]
  334. Story, E. & Kopec, R. & Schwartz, S. & Harris, G. (2010). An update on the health effects of
    tomato lycopene. Annual Review of Food Science and Technology 1: 189–210. Review.
  335. Macready, A. et al. (2014). Flavonoid-rich fruit and vegetables improve microvascular reactivity and inflammatory status in men at risk of cardiovascular disease – FLAVURS: a randomized controlled trial. The American Journal of Clinical Nutrition 99 (3): 479–489.
  336. Park, E. J. & Pezzuto, J. M. (2002). Botanicals in cancer chemoprevention. Cancer Metastasis Reviews 21 (3-4): 231–255.
  337. Carter, P. et al. (2010) Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. British Medical Journal 341: c4229.
  338. Esposito, K. & Giugliano, D. (2011). Increased consumption of green leafy vegetables, but not fruit, vegetables or fruit and vegetables combined is associated with reduced incidence of type 2 diabetes. Evidence Based Medicine 16: 27–28.
  339. Villegas, R. et al. (2008). Vegetable but not fruit consumption reduces the risk of type 2 diabetes in Chinese women. The Journal of Nutrition 138 (3): 574–580.
  340. Dauchet, L. & Amouyel, P. & Hercberg, S. & Dallongeville, J. (2006). Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. The Journal of Nutrition 136 (10): 2588–2593.
  341. He, F. & Nowson, C. & MacGregor, G. (2006). Fruit and vegetable consumption and stroke:
    meta-analysis of cohort studies. Lancet 367 (9507): 320–326. Review.
  342. Wu, Q. & Yang, Y. & Wang, J. & Han, L. & Xiang, Y. (2013). Cruciferous vegetable consumption and gastric cancer risk: a meta-analysis of epidemiological studies. Cancer Science 104 (8): 1067–1073.
  343. Lam, T. et al. (2010). Cruciferous vegetable intake and lung cancer risk: a nested case-control study matched on cigarette smoking. Cancer Epidemiology Biomarkers and Prevention
    19 (10): 2534–2540.
  344. Li Y. et al. (2010). Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research 16 (9): 2580–2590.
  345. Pawlik, A. & Wiczk, A. & Kaczyńska, A. & Antosiewicz, J. & Herman-Antosiewicz, A. (2013).
    Sulforaphane inhibits growth of phenotypically different breast cancer cells. European
    Journal of Nutrition 52 (8): 1949–1958.
  346. Traka M. et al. (2008). Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate. PLoS One 3 (7) :e2568.
  347. Boddupalli, S. & Mein, J. & Lakkanna, S. & James, D. (2012). Induction of phase 2 antioxidant
    enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant
    activity of vitamins a, C, and e. Frontiers in Genetics 3: 7.
  348. Kianbakht, S. & Khalighi-Sigaroodi, F. & Dabaghian, F. (2013). Improved glycemic control in
    patients with advanced type 2 diabetes mellitus taking Urtica dioica leaf extract: a randomized double-blind placebo-controlled clinical trial. Journal of Clinical Laboratory Analysis 59 (9–10): 1071–1076.
  349. Randall, C. et al. (2000). Randomized controlled trial of nettle sting for treatment of base-of-thumb pain. Journal of the Royal Society of Medicine 93 (6): 305–309.
  350. Chrubasik, J. & Roufogalis, B. & Wagner, H. & Chrubasik, S. (2007). A comprehensive review on
    the stinging nettle effect and efficacy profiles. Part II: urticae radix. Phytomedicine 14 (7–8): 568–579. Review.
  351. Chowdhury, R. et al. (2014). Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Annals of Internal Medicine 160 (6): 398–406. Review.
  352. Harris, W. & Shearer, G. (2014). Omega-6 Fatty Acids and Cardiovascular Disease: Friend or Foe? Circulation Epub ahead of print.
  353. Siri-Tarino, P. & Sun, Q. & Hu, F. & Krauss, R. (2010). Meta-analysis of prospective cohort
    studies evaluating the association of saturated fat with cardiovascular disease. The American Journal of Clinical Nutrition 91 (3): 535–546.
  354. Mente, A. & de Koning, L. & Shannon, H. & Anand, S. (2009). A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Archives of Internal Medicine 169 (7): 659–669.
  355. Unlu, N. & Bohn, T. & Clinton, S. & Schwartz, S. (2005). Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. The Journal of Nutrition 135 (3): 431–436.
  356. Lipoeto, N. & Agus, Z. & Oenzil, F. & Wahlqvist, M. & Wattanapenpaiboon, N. (2004). Dietary intake and the risk of coronary heart disease among the coconut-consuming Minangkabau in West Sumatra, Indonesia. Asia Pacific Journal of Clinical Nutrition 13 (4): 377–384.
  357. Intahphuak, S. & Khonsung, P. & Panthong, A. (2010). Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil. Pharmacological Biology 48 (2): 151–157.
  358. Arunima, S. & Rajamohan, T. (2014). Influence of virgin coconut oil-enriched diet on the transcriptional regulation of fatty acid synthesis and oxidation in rats – a comparative study. British Journal of Nutrition 111 (10): 1782–1790.
  359. Couvreur, S. et al. (2006). The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science 89 (6): 1956–1969.
  360. Russo, I. & Luciani, A. & De Cicco. P. & Troncone, E. & Ciacci, C. (2012). Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn’s mucosa through modulation of antioxidant defense machinery. PLoS One 7 (3): e32841.
  361. Ohira, H. et al. (2013). Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of Atherosclerosis and Thrombosis 20 (5): 425–442.
  362. Beauchamp, G. et al. (2005). Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437 (7055): 45–46.
  363. Cicerale, S. & Lucas, L. & Keast, R. (2010). Biological activities of phenolic compounds present in virgin olive oil. International Journal of Molecular Sciences 11 (2): 458–479.
  364. Lucas, L. & Russell, A. & Keast, R. (2011). Molecular mechanisms of inflammation. Anti-inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal. Current Pharmaceutical Design 17 (8): 754–768. Review.
  365. Parkinson, L. & Keast, R. (2014). Oleocanthal, a phenolic derived from virgin olive oil: a review of the beneficial effects on inflammatory disease. International Journal Molecular Sciences 15 (7): 12323–12334.
  366. Psaltopoulou, T. & Kosti, R. & Haidopoulos, D. & Dimopoulos, M. & Panagiotakos, D. (2011). Olive oil intake is inversely related to cancer prevalence: a systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies. Lipids in Health and Disease 10:127.
  367. Guasch-Ferré, M. et.al. (2014). Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Medicine 12: 78.
  368. Buckland, G. et al. (2012). Olive oil intake and mortality within the Spanish population (EPIC-Spain). American Journal of Clinical Nutrition 96 (1): 142–149.
  369. De Nicoló, S. et al. (2013). Effects of olive polyphenols administration on nerve growth factor
    and brain-derived neurotrophic factor in the mouse brain. Nutrition 29 (4): 681–687.
  370. Valls-Pedret, C. et al. (2012). Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. Journal of Alzheimers Disease 29 (4): 773–782.
  371. García-Hernández, V. et al. (2013). Effect of omega-3 dietary supplements with different oxidation levels in the lipidic profile of women: a randomized controlled trial. International Journal of Food Sciences and Nutrition 64 (8): 993–1000.
  372. Fontani, G. et al. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. European Journal of Clinical Investigation 35 (11): 691–699.
  373. Grosso, G. et al. (2014). Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS One 9 (5): e96905.
  374. Serhan, C. (2014). Pro-resolving lipid mediators are leads for resolution physiology. Nature 510 (7503): 92–101. Review.
  375. Stonehouse, W. et al. (2013). DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. American Journal of Clinical Nutrition 97 (5): 1134–1143.
  376. Cole, G. & Frautschy, S. (2010). DHA may prevent age-related dementia. Journal of Nutrition 140 (4): 869–874.
  377. Yurko-Mauro, K. (2010). Cognitive and cardiovascular benefits of docosahexaenoic acid in aging and cognitive decline. Current Alzheimer Research 7 (3): 190–196. Review.
  378. Wen, Y. & Dai, J. & Gao, Q. (2014). Effects of Omega-3 fatty acid on major cardiovascular events and mortality in patients with coronary heart disease: a meta-analysis of randomized controlled trials. Nutrition Metabolism and Cardiovascular Diseases 24 (5): 470–475.
  379. Kotwal, S. & Jun, M. & Sullivan, D. & Perkovic, V. & Neal, B. (2012). Omega 3 Fatty acids and
    cardiovascular outcomes: systematic review and meta-analysis. Circulation: Cardiovascular
    Quality and Outcomes 5 (6): 808–888.
  380. Miller, P. & Van Elswyk, M. & Alexander, D. (2014). Long-chain omega-3 fatty acids
    eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. American Journal of Hypertension
    27 (7): 885–896.
  381. Bernstein, A. & Ding, E. & Willett, W. & Rimm, E. (2012). A meta-analysis shows that
    docosahexaenoic acid from algal oil reduces serum triglycerides and increases
    HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease. The Journal of
    Nutrition 142 (1): 99–104.
  382. Larsson, S. & Orsini, N. & Wolk, A. (2012). Long-chain omega-3 polyunsaturated fatty acids
    and risk of stroke: a meta-analysis. European Journal of Epidemiology 27 (12) :895–901.
  383. Kris-Etherton P. et al. (2000). Polyunsaturated fatty acids in the food chain in the United States. The American Journal of Clinical Nutrition 71 (1 Suppl): 179S–188S. Review.
  384. Simopoulos, A. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine and Pharmacotherapy 56 (8): 365–379. Review.
  385. Kelly, J. Jr. & Sabaté, J. (2006). Nuts and coronary heart disease: an epidemiological perspective. British Journal of Nutrition 96 Suppl 2: S61–67. Review.
  386. Guasch-Ferré, M. et al. (2013). Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Medicine 11: 164.
  387. Bao, Y. et al. (2013). Association of nut consumption with total and cause-specific mortality. New England Journal of Medicine 369 (21): 2001–2011.
  388. Torabian S, Haddad E, Rajaram S, Banta J, Sabaté J. (2009). Acute effect of nut consumption on plasma total polyphenols, antioxidant capacity and lipid peroxidation. Journal of Human Nutrition and Dietetics 22 (1): 64–71.
  389. Ukhanova, M. et al. (2014). Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. British Journal of Nutrition 111 (12): 2146–2152.
  390. Kendall, C. & Josse, A. & Esfahani, A. & Jenkins, D. (2011). The impact of pistachio intake alone or in combination with high-carbohydrate foods on post-prandial glycemia. European Journal of Clinical Nutrition 65 (6): 696–702.
  391. Kocyigit, A. & Koylu, A. & Keles, H. (2006). Effects of pistachio nuts consumption on plasma lipid profile and oxidative status in healthy volunteers. Nutrition Metabolism and Cardiovascular Disease 16 (3): 202–209.
  392. Thomson, C. & Chisholm, A. & McLachlan, S. & Campbell, J. (2008). Brazil nuts: an effective way to improve selenium status. The American Journal of Clinical Nutrition 87 (2): 379–384.
  393. Iwamoto, M. et al. (2000). Walnuts lower serum cholesterol in Japanese men and women. Journal of Nutrition 130 (2): 171–176.
  394. Tan, S. & Mattes, R. (2013). Appetitive, dietary and health effects of almonds consumed with meals or as snacks: a randomized, controlled trial. European Journal of Clinical Nutrition 67 (11): 1205–1214.
  395. Wien, M. et al. (2010). Almond consumption and cardiovascular risk factors in adults with prediabetes. Journal of American College of Nutrition 29 (3): 189–197.
  396. Josse, A. et al. (2007). Almonds and postprandial glycemia – A dose-response study. Metabolism 56 (3): 400–404.
  397. Jalali-Khanabadi, B. & Mozaffari-Khosravi, H. & Parsaeyan, N. (2010). Effects of almond dietary supplementation on coronary heart disease lipid risk factors and serum lipid oxidation parameters in men with mild hyperlipidemia. The Journal of Alternative and Complementary Medicine 16 (12): 1279–1283.
  398. Hudthagosol, C. et al. (2011). Pecans acutely increase plasma postprandial antioxidant capacity and catechins and decrease LDL oxidation in humans. The Journal of Nutrition 141 (1): 56–62.
  399. Garg, M. & Blake, R. & Wills, R. & Clayton, E. (2007). Macadamia nut consumption modulates
    favourably risk factors for coronary artery disease in hypercholesterolemic
    subjects. Lipids 42 (6): 583–587.
  400. Griel, A. et al. (2008). A macadamia nut-rich diet reduces total and LDL-cholesterol in mildly
    hypercholesterolemic men and women.
    The Journal of Nutrition 138 (4): 761–767.
  401. Frazier, A. et al. (2013). Prospective study of peripregnancy consumption of peanuts or tree nuts by mothers and the risk of peanut or tree nut allergy in their offspring. JAMA Pediatrics 168 (2): 156–162.
  402. Macfarlane, B. (1988). Inhibitory effect of nuts on iron absorption. The American Journal of Clinical Nutrition 47 (2): 270–274.
  403. Dahl, W. & Lockert, E. & Cammer, A. & Whiting, S. (2005). Effects of flax fiber on laxation and glycemic response in healthy volunteers. Journal of Medicinal Food 8 (4): 508–511.
  404. Mohd Ali, N. et al. (2012). The promising future of chia, Salvia hispanica L. Journal of Biomedicine and Biotechnology 2012: 171956.
  405. Illian, T. & Casey, J. & Bishop, P. (2011). Omega 3 Chia seed loading as a means of
    carbohydrate loading. Journal of Strength and Conditioning Research 25 (1): 61–65.
  406. Glew, R. et al. (2006). Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods for Human Nutrition 61 (2): 51–56.
  407. House, J. & Neufeld, J. & Leson, G. (2010). Evaluating the quality of protein from hemp seed
    (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. Journal of Agricultural And Food Chemistry 58 (22): 11801–11807.
  408. Pasman, W. J. et al (2008). The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women. Lipids in Health Disease 7: 10.
  409. Reagor, L. et al. (2002). The effectiveness of processed grapefruit-seed extract as an antibacterial agent: I. An in vitro agar assay. The Journal of Alternative and Complementary Medicine 8 (3): 325–332.
  410. Flora, K. & Hahn, M. & Rosen, H. & Benner, K. (1998). Milk thistle (Silybum marianum) for the
    therapy of liver disease. The American Journal of Gastroenterology 93 (2): 139–143. Review.
  411. Cacciapuoti, F. et al. (2013). Silymarin in non alcoholic fatty liver disease. World Journal of Hepatology 5 (3): 109–113.
  412. Braidy N. et al. (2013). Neuroprotective effects of a variety of pomegranate juice extracts against MPTP-induced cytotoxicity and oxidative stress in human primary neurons. Oxidative Medicine and Cellular Longevity 685909.
  413. Iacobellis, N. & Lo Cantore, P. & Capasso, F. & Senatore, F. (2005). Antibacterial activity of
    Cuminum cyminum L. and Carum carvi L. essential oils. Journal of Agricultural and Food Chemistry 53 (1): 57–61.
  414. Paul, B. & Snyder, S. (2010). The unusual amino acid L-ergothioneine is a physiologic
    cytoprotectant. Cell Death and Differentiation 17 (7): 1134–1140
  415. Lindequist, U. & Niedermeyer, T. & Jüllich, W. (2005). The Pharmacological Potential of Mushrooms. Evidence-based Complementary and Alternative Medicine 2 (3): 285–299.
  416. Rogers. R. (2011). The Fungal Pharmacy: The Complete Guide to Medicinal Mushrooms and Lichens of North America. North Atlantic Books.
  417. Ganeshpurkar, A. & Rai, G. & Jain, A. (2010). Medicinal mushrooms: Towards a new horizon.
    Pharmacognosy Reviews 4 (8): 127–135.
  418. Evira. (2010). Myrkylliset sienet. Elintarviketurvallisuusvirasto Evira. [luettu: 29.11.2014]
  419. Evira. (2008). Sienten käsittelyohjeet. Radioaktiivisen cesiumin vähentäminen. STUK ja Evira. [luettu: 29.11.2014]
  420. Nieminen, P. & Kirsi, M. & Mustonen, A. M. (2006). Suspected myotoxicity of edible wild mushrooms. Experimental Biology and Medicine 231 (2): 221–228.
  421. Beelman, R. & Kalaras, M. (2009). Post-harvest Vitamin D Enrichment of Fresh Mushrooms. HAL Project #MU07018, Penn State University.
  422. Gleeson, T. & Wada, Y. & Bierkens, M. & van Beek, L. (2012). Water balance of global aquifers
    revealed by groundwater footprint. Nature 488 (7410): 197–200.
  423. World Water Assessment Programme. (2003). Water for People, Water for Life. The United Nations World Water Development Report. UNESCO. [luettu: 29.11.2014]
  424. Hakulinen, P. (2006). Experimental studies on cellular mechanisms of the carcinogenicity of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Kansanterveyslaitos, väitöstutkimus. [luettu: 30.11.2014]
  425. Pekkarinen. A. (2014). Putkien syöpyminen on monen talon ongelma. Suomen Kiinteistölehti. [luettu: 29.11.2014]
  426. Vesi- ja viemärilaitosyhdistys. (2009). Kiinteistöjen metallisten käyttövesiputkistojen ja -laitteistojen kestävyys. Tiivistelmäraportti. FCG Planeko OY. [luettu: 29.11.2014]
  427. Kousa, A. et al. (2006). Calcium:magnesium ratio in local groundwater and incidence of acute myocardial infarction among males in rural Finland. Environmental Health Perspectives 114 (5): 730–734.
  428. Valsta, L. et al. (2008). Juomat ravitsemuksessa. Valtion ravitsemusneuvottelukunnan raportti. [luettu: 30.11.2014]
  429. Wagner, M. & Oehlmann, J. (2009). Endocrine disruptors in bottled mineral water: total
    estrogenic burden and migration from plastic bottles. Environmental Science and Pollution Research 16 (3): 278–286.
  430. Higdon, J. & Frei, B. (2006). Coffee and health: a review of recent human research. Critical
    Reviews in Food Science and Nutrition 46 (2): 101–123. Review.
  431. Ding, M. et al. (2014). Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care 37 (2): 569–586.
  432. Ding, M. et al. (2014). Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 2014 129 (6): 643–659.
  433. Crippa, A. & Discacciati, A. & Larsson, S. & Wolk, A. & Orsini, N. (2014). Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. American Journal of Epidemiology 180 (8): 763–775.
  434. Wang, Y. & Ho, C. (2009). Polyphenolic chemistry of tea and coffee: a century of
    progress. Journal of Agriculture and Food Chemistry 57 (18): 8109–8114. Review.
  435. Djordjevic, N. & Ghotbi, R. & Jankovic, S. & Aklillu, E. (2010). Induction of CYP1A2 by heavy
    coffee consumption is associated with the CYP1A2 -163C>A polymorphism. European Journal of Clinical Pharmacology 66 (7): 697–703.
  436. Suarez-Quiroz M. et al. (2005). Effect of the post-harvest processing procedure on OTA occurrence in artificially contaminated coffee. International Journal of Food Microbiology 103 (3): 339–345.
  437. Viani, R. (2002). Effect of processing on ochratoxin A (OTA) content of coffee. Advances in Experimental Medicine and Biology 504: 189–193. Review.
  438. van der Stegen, G. & Essens, P. & van der Lijn, J. (2001). Effect of roasting conditions on reduction of ochratoxin a in coffee. Journal of Agricultural and Food Chemistry 49 (10): 4713–4715.
  439. Tullilaboratorio. (2012). Mykotoksiinit. Suomen tulli. [luettu: 28.11.2014]
  440. European Coffee Co-operation. (2006). Quality Control System for Coffee with respect to Occurrence of Ochratoxin A in the coffee chain. European Coffee Co-operation Task Force. [luettu: 28.11.2014]
  441. Hicks, M. & Hsiesh, Y. (1996). Tea preparation and its influence on methylxanthine concentration. Food Research International 29 (3–4): 325–330.
  442. Schwalfenberg, G &, Genuis, S. & Rodushkin, I. (2013). The benefits and risks of consuming
    brewed tea: beware of toxic element contamination. Journal of Toxicology 2013: 370460.
  443. Owen, G. & Parnell, H. & De Bruin, E. & Rycroft, J. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutritional Neuroscience 11 (4): 193–198.
  444. Peng, X. et al. (2014). Effect of green tea consumption on blood pressure: a meta-analysis of 13 randomized controlled trials. Scientific Reports 4: 6251.
  445. Khalesi, S. et al. (2014). Green tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials. European Journal of Nutrition 53 (6): 1299–1311.
  446. Onakpoya, I. & Spencer, E. & Heneghan, C. & Thompson, M. (2014). The effect of green tea on
    blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials. Nutrition Metabolism and Cardiovascular Disease 24 (8): 823–836.
  447. Liu, K. et al. (2013). Effect of green tea on glucose control and insulin sensitivity: a meta-analysis of 17 randomized controlled trials. The American Journal of Clinical Nutrition 98 (2): 340–348.
  448. Boehm, K. et al. (2009). Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database of Systematic Reviews (3): CD005004. Review.
  449. Hodgson, A. & Randell, R. & Jeukendrup, A. (2013). The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. Advances in Nutrition 4 (2): 129–140. Review.
  450. Giulian, R. et al. (2007). Elemental characterization of commercial mate tea leaves (Ilex paraguariensis A. St.-Hil.) before and after hot water infusion using ion beam techniques. Journal of Agriculture and Food Chemistry 55 (3): 741–746.
  451. Reis Ede, M. et al. (2014). Antidepressant-Like Effect of Ilex paraguariensis in Rats. Biomed Research International 2014: 958209.
  452. Bracesco, N. & Sanchez, A. & Contreras, V. & Menini, T. & Gugliucci, A. (2011). Recent advances on Ilex paraguariensis research: minireview. Journal of Ethnopharmacology 136 (3): 378–384.
  453. Pereira, D. et al. (2012). Influence of the traditional Brazilian drink Ilex, paraguariensis tea on glucose homeostasis. Phytomedicine. 19 (10): 868–877.
  454. Chiang, C. et al. (2005). Pu-erh tea supplementation suppresses fatty acid synthase expression in the rat liver through downregulating Akt and JNK signalings as demonstrated in human hepatoma HepG2 cells. Oncology Research 16 (3): 119–128
  455. Lin, J. & Lin-Shiau, S. (2006). Mechanisms of hypolipidemic and anti-obesity effects of
    tea and tea polyphenols. Molecular Nutrition and Food Research 50 (2): 211–217. Review.
  456. Kuo, K. et al. (2005). Comparative studies on the hypolipidemic and growth suppressive effects of oolong, black, pu-erh, and green tea leaves in rats. Journal of Agricultural and Food Chemistry 53 (2): 480–489.
  457. Yi, D. et al. (2014). Reduced risk of dyslipidaemia with oolong tea consumption: a population-based study insouthern China. British Journal of Nutrition 111 (8): 1421–1429.
  458. Hossain, S. & Aoshima, H. & Koda, H. Kiso, Y. (2004). Fragrances in oolong tea that enhance
    the response of GABAA receptors. Bioscience Biotechnology and Biochemistry 68 (9): 1842–1848.
  459. Unachukwu, U. &, Ahmed, S. & Kavalier, A. & Lyles, J. & Kennelly, E. (2010). White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles. Journal of Food Science 75 (6): C541–548.
  460. Arab, L. & Khan, F. & Lam, H. (2013). Tea consumption and cardiovascular disease risk. The American Journal of Clinical Nutrition 98 (6 Suppl): 1651S–1659S. Review.
  461. Miura, Y. et al. (2001). Tea catechins prevent the development of atherosclerosis in apoprotein
    E-deficient mice. The Journal of Nutrition 131 (1): 27–32.
  462. Arab, L. & Liebeskind, D. (2010). Tea, flavonoids and stroke in man and mouse. Archives of
    Biochemistry and Biophysics 501 (1): 31–36. Review.
  463. Camouse, M. et al. (2009). Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin. Experimental Dermatology 18 (6): 522–526.
  464. Thring, T., & Hili, P. & Naughton, D. (2009). Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complementary and Alternative Medicine 9: 27.
  465. Lorenz, M. et al. (2007). Addition of milk prevents vascular protective effects of tea. European Heart Journal 28 (2): 219–223.
  466. Terveyden ja hyvinvoinnin laitos. (2013). Alkoholijuomien kulutus 2013. THL. [luettu: 3.12.2014]
  467. Huttunen, J. (2012). Alkoholi ja terveys. Lääkärikirja Duodecim. [luettu: 3.12.2014]
  468. Neafsey, E. & Collins, M. (2011). Moderate alcohol consumption and cognitive risk.
    Neuropsychiatric Disease and Treatment 7: 465–484.
  469. Li, S. et al. (2014). Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity. Food and Function 5 (1): 42–49.
  470. Kaviarasan, S. & Viswanathan, P. & Anuradha, C. V. (2007). Fenugreek seed (Trigonella foenum graecum) polyphenols inhibit ethanol-induced collagen and lipid accumulation in rat liver. Cell Biology and Toxicology 23 (6): 373–383.
  471. Lee, M. et al. (2014). Red ginseng relieves the effects of alcohol consumption and hangover symptoms in healthy men: a randomized crossover study. Food and Function 5 (3): 528–534.
  472. Ushida, Y. & Talalay, P. (2013). Sulforaphane accelerates acetaldehyde metabolism by inducing aldehyde dehydrogenases: relevance to ethanol intolerance. Alcohol and Alcoholism 48 (5): 526–534.